If it's not what You are looking for type in the equation solver your own equation and let us solve it.
32+18x+x^2=0
a = 1; b = 18; c = +32;
Δ = b2-4ac
Δ = 182-4·1·32
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-14}{2*1}=\frac{-32}{2} =-16 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+14}{2*1}=\frac{-4}{2} =-2 $
| 4x=20/11 | | 137+x=57+x | | 3x-(-2013)+2(21-3-2)=0 | | 8(n+6)=60 | | 7m^2=34m+5 | | n^=4n | | 2/3t=-9 | | 5n^2-8=18n | | 4x+2(3x-5)=4x-10+6x | | 4x+2(3x-5)=4x-10+8x | | a/14=0.8 | | .16=4n | | (2p+3)(2p−3)(p+7)=0 | | x+x+30+x-12=180 | | 3(x-1)=8+6-5x-9 | | x^-20=x | | 2x+3/12=9/12 | | w(w−6)2=0 | | 3w+16=49 | | 70=4x/5+26 | | 4x+1=6x+18 | | 14-3p=26 | | 1/3(12x+27)-5=3/5(40x-25) | | 2x+(7x+9)=180 | | 60n/1=68n-1 | | 9(x+6))=5|x-(7-x)| | | 2x+4=12x+18 | | x+30+x=120 | | 14=11+w/8w⋅6 | | 6=-3-2/3x | | -3(x-5)-2(2×+1)=-10 | | 4x+19=8x+19 |